6DOF Point Cloud Alignment using Geometric Algebra-based Adaptive Filtering

Anas Al-Nuaimi, Wilder B. Lopes Eckehard Steinbach, Cassio G. Lopes

Technische Universität München - Universidade de São Paulo

March 08, 2016 IEEE WACV 2016 - Lake Placid, NY, USA

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Starting with

PCDs from the Stanford Dataset

TSP

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

► 3D Point Clouds: Target

No initial alignment

(Red) and Source (Blue)

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Starting with

PCDs from the Stanford Dataset

Establishing correspondences

ISP

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Conclusion

Keypoints extraction

No initial alignment

3D Point Clouds: Target

(Red) and Source (Blue)

- Local shape features
- We use Harris 3D with SHOT [Tombari et al.]
- True and false correspondences (1-to-1)

Standard Alignment Estimation

- ► *K* correspondence points
- Rigid transformation? Least-squares problem

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Standard Alignment Estimation

- ► *K* correspondence points
- Rigid transformation? Least-squares problem

$$\mathcal{F}(\mathbf{R}) = \frac{1}{\mathcal{K}} \sum_{n=1}^{\mathcal{K}} \|y_n - \mathbf{R}x_n\|_2^2, \text{ subject to } t = \bar{y} - \mathbf{R}\bar{x}. \quad (1)$$

- **R**: 3×3 rotation matrix, *t*: 3×1 translation vector.
 - ► Solution: SVD-based algorithms → *Outlier sensitive*

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Geometric Algebra Approach

Recast the least-squares problem (1) in GA:

Error:
$$e_n = y_n - \mathbf{R}x_n \Rightarrow e_n = y_n - \mathbf{R}x_n$$

$$\mathbf{r} \mathbf{x}_n \mathbf{\tilde{r}}$$
 .

(2)

(3)

Geometric Product

The least-squares cost function becomes

$$J(r) = rac{1}{K} \sum_{n=1}^{K} |e_n|^2 = rac{1}{K} \sum_{n=1}^{K} |y_n - rx_n \widetilde{r}|^2$$
,

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Geometric Algebra Approach

Recast the least-squares problem (1) in GA:

Error:
$$e_n = y_n - \mathbf{R}x_n \Rightarrow e_n = y_n - \mathbf{R}x_n$$

$$\mathbf{r} \mathbf{x}_n \mathbf{r}$$
 .

Geometric Product

The least-squares cost function becomes

$$J(r) = \frac{1}{K} \sum_{n=1}^{K} |e_n|^2 = \frac{1}{K} \sum_{n=1}^{K} |y_n - rx_n \tilde{r}|^2$$

(3)

Point Cloud Alignment Problem

Geometric Algebra Approach

6DOF PCD

Alignment with

W. B. Lopes

wilder@usp.br

Evaluation and Comparison

Conclusion

which is minimized by the GA Least-Mean-Squares adaptive filter (GA-LMS)

$$r_i = r_{i-1} + \mu \Big[y_i \wedge (r_{i-1} x_i \widetilde{r}_{i-1}) \Big] r_{i-1} \Big]. \tag{4}$$

"Look at" one correspondence at each iteration

Enforces reduction in computational complexity

Selecting the Step Size

 μ is the only parameter of the GA-LMS.

Figure : Step-size recommendation for the Stanford Bunny set.

6DOF PCD

Alignment with

Iteration Skipping

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

- Skip current MSE iteration if higher than previous one
- Reduces contributions from outliers

Sample Refeeding

- We extract further information from already processed samples;
- Useful when the number of correspondences is small and/or step size is not large enough;

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Evaluation and Comparison

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Contributions of this work

- 1. A rule to set the GA-LMS step size as a function of the PCD dimensions and the correspondences is provided
- 2. The adaptive nature of the GA-LMS is exploited to make it more outlier-resilient than standard SVD-based least-squares estimator
- **3.** The robustified GA-LMS is shown to be successful as the minimizer of a 6DOF alignment algorithm

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

6DOF PCD Alignment with GAAFs

W. B. Lopes wilder@usp.br

Point Cloud Alignment Problem

Geometric Algebra Approach

Exploiting Adaptive Nature

Evaluation and Comparison

Conclusion

See you in the poster session!