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Introduction

I Linear Algebra (LA) has been the mathematical lingua franca in signal
processing.

I LA is a reliable tool for the derivation of regular adaptive filters.

min
w

∥∥d(i)− uTi wi
∥∥ 2 (1)

I LA-based AFs are suited for vector (oriented line segment) estimation.

I What about areas, volumes, hypersurfaces ?

I Is LA the only way to describe and understand linear transformations? No.
I Geometric Algebra

I Multivectors
I Geometric product
I Geometric calculus

I How can one use it for the benefit of AFs?
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Contributions

1. Recast of central concepts of linear estimation into GA framework

2. GAAFs (standard shape)
I Design of GA Least-Mean Squares (GA-LMS);
I Steady-state mean-square analysis.

3. GAAFs (pose estimation)
I Design of GA-LMS for pose estimation;
I Evaluation of the computational complexity;
I Calculation of step-size bounds as a function of the PCDs points and their

greatest dimension.

4. Computational implementation - openga.org
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The System Identification Problem

I The goal is to estimate the
entries (coefficients) of an
unknown plant (system)
modeled by an M × 1 vector
wo

d(i) = uHi w
o + v(i), (2)

Figure 1 : The system identification scenario.
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Registration of Point Clouds

I 3D Point Clouds: Target (Red) and
Source (Blue).

I No initial alignment.

I Typical problem in computer vision,
particularly visual navigation
(robots, drones, autonomous
vehicles etc).

Figure 2 : Examples of Point Clouds.
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Registration of Point Clouds

Feature
Detection

Feature
Matching

Transformation
Estimation

Alignment

Rotation
and

Translation

Figure 3 : Registration Pipeline.

I The goal is to match two PCDs (in this case, bunnies) which are initially
unaligned. This work focus on the “Transformation Estimation” phase,
where a new estimator based on GA and AFs is introduced.
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Elements of Geometric Algebra

The GA G(Rn) is a geometric extension of Rn to represent orientation and
magnitude [1].

I Vectors in Rn are also vectors in G(Rn);

I geometric product (GP):

Vectors a and b in Rn → ab , a · b+ a ∧ b;

I Noncommutative: ab 6= ba; Associative: abc = (ab)c = a(bc);

I a · b = 0⇒ ab = a ∧ b = −b ∧ a = −ba.
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Elements of Geometric Algebra

Figure 4 : Inner and outer products in R3. In the outer product case, the orientation of
the circle defines the orientation of the area (bivector).

I From now on all products are Geometric Products (GP)
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Geometric Algebra of a Vector Space

In Rn: (orthonormal basis + 1)
GP−−→ 2n elements ∈ G(Rn)

In R3: (orthonormal basis + 1)
GP−−→ 23=8 elements ∈ G(R3)

{γ1, γ2, γ3}+ {1} GP−−→ {1, γ1, γ2, γ3︸ ︷︷ ︸
vectors

, γ12, γ23, γ31︸ ︷︷ ︸
bivectors

, I︸︷︷︸
trivector

}

γij , γiγj , I , γ1γ2γ3

Multivector A ∈ G(Rn) → fundamental information block:

A = 〈A〉0︸︷︷︸
scalar

+ 〈A〉1︸︷︷︸
vector

+ 〈A〉2︸︷︷︸
bivector

+ · · · =
∑
g

〈A〉g. (3)

GA theory enables us to sum apples and oranges in a well-defined fashion!
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Geometric Algebra of a Vector Space

I G(R3): Complete Geometric Algebra of R3.

Figure 5 : The elements of G(R3) basis (besides the scalar 1): 3 vectors, 3 bivectors
(oriented areas) γij , and the trivector I (pseudoscalar/oriented volume).
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Subalgebras and Isomorphism

I G+(R2): Rotor Algebra of R2 has basis {1, γ12}.

I Isomorphic to the algebra of complex numbers.
A = c+ jd, {c, d} ∈ R→ j is a bivector!

j2 = (γ1γ2)(γ1γ2)
= −(γ1γ2)(γ2γ1)
= −γ1(γ2γ2)︸ ︷︷ ︸

=1

γ1

= −γ1γ1 = −1

(4)
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Subalgebras and Isomorphism

I G+(R3): Rotor Algebra of R3 has basis {1, γ12, γ23, γ31}.

I Isomorphic to the algebra of quaternions [2, 3]:

i↔ −γ12 j ↔ −γ23 k ↔ −γ31, (5)

where {i, j, k} are the three imaginary unities of quaternion algebra.

I Particularly useful in the development of GAAFs for pose estimation.

I Rotation operator:
x→ rxr̃︸︷︷︸

rotated

, (6)

where x ∈ Rn and r ∈ G+(Rn).
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Linear Estimation in GA

I Linear Algebra least-squares problem:

min
∥∥∥d− d̂∥∥∥2 (7)

{d, d̂} ∈ Rn, n = {1, 2, · · · } and d̂ is the estimate for d.

I Two special cases:

1. Standard: d is a multivector, d̂ = u∗w is also a multivector resultant from an
array product, u and w are M × 1 arrays of multivectors

2. Pose estimation: {d, x} ∈ Rn are vectors, d̂ = rxr̃ + t, where the rotor r and
its reversed version r̃ rotate x, and t is a n× 1 translation vector
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General Cost Function in GA

I
M∑
k=1

AkXBk → canonical form of a linear transformation applied to the

multivector X ([1, p.64 and p.121])
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Geometric-Algebra Adaptive Filters (Standard)

I Minimize

Js(w) = |d− u∗w|2 (8)

I Steepest-descent rule is adopted → follow the opposite direction of the
gradient of the cost function

I Omitting the calculations here (please refer to Section 5.1 in the thesis)
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GA-LMS (Standard)

I Update rule:

wi = wi−1 + µuie(i) , (9)

where µ is the step size and e(i) = d(i)− u∗iwi︸︷︷︸
array product

I Same shape of the regular LMS AFs

I No constraints on the entries of the arrays u and w → they can be any kind
of multivector

I It generalizes the standard LMS AF for several types of entries: general
multivectors, rotors, quaternions, complex numbers, real numbers.
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Steady-State Analysis

I The performance analysis adopts an specific data model (see Section 5.2)

I Starting point:

wi = wi−1 + µuif(e(i)), (10)

where f(·) is a multivector-valued function of the estimation error e(i).

I Boldface → random quantity

I Energy Conservation Relations (ECR) [4]

I The ECR technique performs an interplay between the energies of the
weight array w and the error e at two successive time instants:

i− 1 (a priori) and i (a posteriori)
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Steady-State Analysis

I The variance relation is obtained

2E
〈
ea(i)f̃

〉
= µE

∣∣∣uif ∣∣∣2 , (11)

where ea(i) = u∗i∆wi−1 is the a priori error, in which ∆wi = wo −wi, and
wo is the optimal weight vector.

I For the GA-LMS, f(e(i)) = e(i) = ea(i) + v(i).

I Separation principle (see [4, p.245])

I Analysis is valid for inputs drawn from a white Gaussian stochastic process

I Steady-state EMSE for the complete algebra G(Rn)

ζ
LMS

=
µM4nσ2uσ

2
v

2− µM2nσ2u
, i→∞ . (12)
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Steady-State Analysis
Any subalgebra g

Gg(Rn)

µM
(n
g

)2
σ2
uσ

2
v

2− µM
(n
g

)
σ2
u

Even Algebras

G+(Rn)

µM

[∑
k

( n
2k

)]2
σ2
uσ

2
v

2− µMσ2
u

∑
k

( n
2k

) , for k = 0, 1, 2, 3, · · ·

Complete GA of R3

G(R3)

32µMσ2
uσ

2
v

1− 4µMσ2
u

Rotor GA of R3 (Quaternions)

G+(R3)

µM
[(3

0

)
+
(3
2

)]2
σ2
uσ

2
v

2− µMσ2
u

[(3
0

)
+
(3
2

)]
Rotor GA of R2 (Complex)

G+(R2)

µM
[(2

0

)
+
(2
2

)]2
σ2
uσ

2
v

2− µMσ2
u

[(2
0

)
+
(2
2

)]
Rotor GA of R (Real)

G+(R)
µMσ2

uσ
2
v

2− µMσ2
u
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Geometric-Algebra Adaptive Filters
(Pose Estimation)
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Standard Rotation Estimation

I Two PCDs in the R3, Y (Target) and X (Source), with K correspondence
points

I Match PCDs centroids

I Rigid transformation? Least-squares problem

F(R) =
1

K

K∑
k=1

‖yk −Rxk‖2 , subject to R∗R = RR∗ = Id and t = ȳ −Rx̄

(13)
R: 3× 3 rotation matrix, t: 3× 1 translation vector.

I Solution: SVD-based algorithms → Outlier sensitive

23 / 43



GAAFs

W.B.Lopes
wil@openga.org

Introduction

Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
in GA

GAAFs (Standard)

GAAFs (Pose
Estimation)

Applications

Conclusion

Standard Rotation Estimation

I Two PCDs in the R3, Y (Target) and X (Source), with K correspondence
points

I Match PCDs centroids

I Rigid transformation? Least-squares problem

F(R) =
1

K

K∑
k=1

‖yk −Rxk‖2 , subject to R∗R = RR∗ = Id and t = ȳ −Rx̄
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The Rotation Estimation Problem in GA

Recast (13) in GA:

ek = yk −Rxk ⇒ ek = yk − rxkr̃︸︷︷︸
Geometric Product

, subject to rr̃ = r̃r = |r|2 = 1. (14)

The least-squares cost function becomes

J(r) =
1

K

K∑
k=1

|yk − rxkr̃|2 =
1

K

K∑
k=1

|ek|2 =
1

K

K∑
k=1

ek ∗ ẽk =
1

K

K∑
k=1

〈ekẽk〉.

(15)
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GA-LMS (Pose Estimation)

I The Geometric-algebra steepest-descent algorithm for pose estimation

ri = ri−1 + µ
4

m

[
m∑
k=1

yk ∧ (ri−1xkr̃i−1)

]
ri−1 , (16)

I If m = 1 (one pair per iteration), ∇̃J(r) is approximated by its current
value

4

K

[
K∑
k=1

yk ∧ (ri−1xkr̃i−1)

]
ri−1≈4 [yi ∧ (ri−1xir̃i−1)] ri−1. (17)

25 / 43



GAAFs

W.B.Lopes
wil@openga.org

Introduction

Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
in GA

GAAFs (Standard)

GAAFs (Pose
Estimation)

Applications

Conclusion

GA-LMS (Pose Estimation)

I Update rule for the GA-LMS for pose estimation is

ri = ri−1 + µ [yi ∧ (ri−1xir̃i−1)] ri−1 , (18)

I “Look at” one correspondence at each iteration

I Enforces reduction in computational complexity compared to traditional
rotation estimation techniques

I GA-LMS cost: 54 real multiplications and 39 real additions per iteration.
I SVD-based methods have cost O(K) at each registration iteration, i.e., it

depends on the number of points in the PCDs.
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GA-LMS (Pose Estimation)

Figure 6 : Step-by-step GA-LMS (pose estimation)
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Step-Size Bounds

µ(Y,X) = ρ

K∑
k=1

〈ykxkQ〉
/ K∑
k=1

〈ykQ̃xkQ〉 , Q =

K∑
n=1

yn ∧ xn. (19)

Figure 7 : Simple rule for selecting µ for the Stanford Bunny set. ρ = 15.
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Applications

29 / 43



GAAFs

W.B.Lopes
wil@openga.org

Introduction

Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
in GA

GAAFs (Standard)

GAAFs (Pose
Estimation)

Applications

Conclusion

Implementation in C++

I The computational implementation of outer and geometric products
requires special libraries and/or toolboxes

I Geometric Algebra ALgorithms Expression Templates (GAALET) [5], a
C++ library for evaluation of GA expressions

I Codes and scripts on openga.org
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System Identification with Standard GAAFs
I G(R3) Multivector Entries

wo =


W1

W2

...
WM

 =


0.55 + 0γ1 + 1γ2 + 2γ3 + 0.71γ12 + 1.3γ23 + 4.5γ31 + 3I
0.55 + 0γ1 + 1γ2 + 2γ3 + 0.71γ12 + 1.3γ23 + 4.5γ31 + 3I

...
0.55 + 0γ1 + 1γ2 + 2γ3 + 0.71γ12 + 1.3γ23 + 4.5γ31 + 3I

 (20)
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Figure 8 : GA-LMS: MSE and EMSE learning curves for M = 10, µ = 0.005, and
σ2
v = 10−3. The curves are averaged over 100 experiments.
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System Identification with Standard GAAFs
I G(R3) Multivector Entries

I σ2v =
{10−2, 10−3, 10−5}.

I The simulated
steady-state value is
obtained by averaging
the last 200 points of
the ensemble-average
learning curve for each
M .
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Figure 9 : Steady-state MSE and EMSE as functions of
the system order M
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System Identification with Standard GAAFs
I G+(R3) Rotor Entries

I (a) EMSE, M = 10,
µ = 0.005, and
σ2v = 10−3 (100
experiments).

I (b) MSE and EMSE
versus the number of
taps for µ = 0.005 and
σ2v = 10−3.
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System Identification with Standard GAAFs
I G+(R2) Complex Entries

I (a) EMSE learning
curve for M = 10,
µ = 0.005, and
σ2v = 10−3 (100
experiments).

I (b) Steady-state MSE
and EMSE versus the
number of taps for
µ = 0.005 and
σ2v = 10−3.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−50

−40

−30

−20

−10

0

10

20

Iterations

E
M
S
E
(d
B
)

 

 

EMSE
EMSE theory

(a)

0 5 10 15 20 25 30 35 40
−55

−50

−45

−40

−35

−30

−25

System Order (Taps)

E
rr
or

(d
B
)

 

 

MSE theory
EMSE theory
MSE
EMSE

(b)

Figure 11 : Complex entries. 34 / 43



GAAFs

W.B.Lopes
wil@openga.org

Introduction

Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
in GA

GAAFs (Standard)

GAAFs (Pose
Estimation)

Applications

Conclusion

System Identification with Standard GAAFs
I G+(R) Real Entries

I (a) EMSE learning
curve for M = 10,
µ = 0.005, and
σ2v = 10−3 (100
experiments).

I (b) Steady-state MSE
and EMSE versus the
number of taps for
µ = 0.005 and
σ2v = 10−3.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−50

−40

−30

−20

−10

0

10

Iterations

E
M
S
E
(d
B
)

 

 

EMSE
EMSE theory

(a)

0 5 10 15 20 25 30 35 40
−60

−55

−50

−45

−40

−35

−30

−25

System Order (Taps)

E
rr
or

(d
B
)

 

 

MSE theory
EMSE theory
MSE
EMSE

(b)

Figure 12 : Real entries.
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3D Registration of Point Clouds with GAAFs for Pose Estimation

I VIDEO

I Cube set.

I (top) EMSE for
σ2v = 10−5 and
different values of µ.

I (bottom) EMSE for
µ = 0.2 and different
noise variances σ2v .
Averaged over 200
realizations.
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Figure 13 : Cube set.
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3D Registration of Point Clouds with GAAFs for Pose Estimation

I Stanford bunnies set.

I The cost function curve is plotted on top of the MSE to emphasize the
minimization performed by the AF.
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Figure 14 : Bunny set, µ = 8.
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I The majority of AF algorithms available in the literature resorts to specific
subalgebras of GA (real, complex numbers and quaternions).

I The development of the GAAFs is an attempt to unify those different AF
approaches under the same mathematical language.

I GAAFs have improved estimation capabilities → they can naturally estimate
any kind of multivector.

I Update rule shape is invariant (GAAFs standard) with respect to the
multivector subalgebra.

I It is expected that any estimation problem posed in terms of hyper-complex
quantities could benefit from this work.

I openga.org → a hub for GA-based algorithms.
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Papers

1. “Geometric-algebra LMS adaptive filter and its application to rotation
estimation”- Published in IEEE Signal Processing Letters 2016.

2. “6DOF point-cloud alignment using geometric algebra-based adaptive
filtering”- Proceedings of IEEE Winter Conference on Applications of
Computer Vision (WACV) 2016.

3. “Analyzing LIDAR Scan Skewing and its Impact on Scan Matching”- IEEE
conference on Indoor Positioning and Indoor Navigation (IPIN) 2016 (paper
accepted).

4. “Geometric-Algebra Adaptive Filters”- to be submitted to IEEE
Transactions on Signal Processing.
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Future Work

I GA-NLMS and GA-RLS for system ID.

I GA-NLMS and GA-RLS for pose estimation.

I Mean-square analysis of the GAAFs for pose estimation.
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Thank you!
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