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Linear Algebra (LA) has been the mathematical lingua franca in signal
processing.

LA is a reliable tool for the derivation of regular adaptive filters.
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Linear Algebra (LA) has been the mathematical lingua franca in signal
processing.

LA is a reliable tool for the derivation of regular adaptive filters.

muin |d(i) —u?u;j}|2 (1)

LA-based AFs are suited for vector (oriented line segment) estimation.
What about areas, volumes, hypersurfaces ?

Is LA the only way to describe and understand linear transformations? No.

Multivectors
Geometric product
Geometric calculus

W.B.Lopes
wil@openga.org

Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
in GA

GAAFs (Standard)

GAAFs (Pose
Estimation)

Applications

Conclusion



Linear Algebra (LA) has been the mathematical lingua franca in signal
processing. W.B.Lopes

wil@openga.org

LA is a reliable tool for the derivation of regular adaptive filters.

. . Preliminaries
min [|d(i) — u] w; || ? (1)
w Fundamentals of
Geometric Algebra

Linear Estimation

LA-based AFs are suited for vector (oriented line segment) estimation. o @2

GAAFs (Standard)
What about areas, volumes, hypersurfaces ?
GAAFs (Pose

Is LA the only way to describe and understand linear transformations? No. Estimation)
Applications

Conclusion

Multivectors
Geometric product
Geometric calculus

How can one use it for the benefit of AFs?



Recast of central concepts of linear estimation into GA framework

GAAFs (standard shape)

Design of GA Least-Mean Squares (GA-LMS);
Steady-state mean-square analysis.

GAAFs (pose estimation)

Design of GA-LMS for pose estimation;

Evaluation of the computational complexity;

Calculation of step-size bounds as a function of the PCDs points and their
greatest dimension.

Computational implementation - openga.org
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The System ldentification Problem

» The goal is to estimate the
entries (coefficients) of an

unknown plant (system)
modeled by an M x 1 vector

w

o

d(i) =u

H

i

w® 4+ v

(4),

()

u(7)

Figure 1 :

AF I

d (i)

The system identification scenario.
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3D Point Clouds: Target (Red) and
Source (Blue).

No initial alignment.

Typical problem in computer vision,
particularly visual navigation
(robots, drones, autonomous
vehicles etc).

Examples of Point Clouds.
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Registration of Point Clouds

Transformation

Estimation

# Rotation™\

and
Translation

Figure 3 © Registration Pipeline.

» The goal is to match two PCDs (in this case, bunnies) which are initially
unaligned. This work focus on the “Transformation Estimation” phase,
where a new estimator based on GA and AFs is introduced.
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Fundamentals of Geometric Algebra
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W.B.Lopes
The GA G(R™) is a geometric extension of R™ to represent orientation and viiopenes ore
magnitude [1]. Introduction

Preliminaries

Vectors in R™ are also vectors in G(R");

1 - Linear Estimation
geometric product (GP): Linear Estimat
Vectors a and b in R — ab = a - b+ a Ab; GAAFs (Standard)

GAAFS .(Pose
Noncommutative: ab # ba; Associative: abc = (ab)c = a(be); Estimation)

Applications
a-b:0:>ab:a/\b:—b/\a:—ba_ Conclusion



Elements of Geometric Algebra

o
a-b=b-a aNb=-bAa

|a - b] = |a||b]cos(§) la A b = |al|b]sin(8)
inner product outer product

Figure 4 = Inner and outer products in R3. In the outer product case, the orientation of
the circle defines the orientation of the area (bivector).

» From now on all products are Geometric Products (GP)

e 3
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Geometric Algebra of a Vector Space

In R™: (orthonormal basis + 1)
In R3: (orthonormal basis + 1)

GP
-
GP

—

2" elements € G(R™)
23=8 elements € G(R?)

g ]
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Geometric Algebra of a Vector Space

In R™: (orthonormal basis + 1)
In R3: (orthonormal basis + 1)

{7, 72,73} + {1}

GP
-
GP

—

2" elements € G(R™)
23=8 elements € G(R?)

£ ]
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Geometric Algebra of a Vector Space
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-
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Geometric Algebra of a Vector Space

In R™: (orthonormal basis + 1) EP, 9 elements € G(R™)
G

In R3: (orthonormal basis + 1) P, 938 elements € G(R?)

GP
{’71772773}4_{1} ? {1771772773771217237ﬁ/317 7z }
—_——— — ———

vectors bivectors trivector

A A
Yij = Vi, L= 717273

g ]
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Geometric Algebra of a Vector Space

In R™: (orthonormal basis + 1) EP, 9 elements € G(R™)
In R3: (orthonormal basis + 1) ="+ 23=8 elements € G(R?)

~—

trivector

GP
{’71772773}4_{1} ? {17A/177277’3:71277237“/317 7z }
—_— ——

vectors bivectors

Yij £ %%, 27773
Multivector A € G(R™) — fundamental information block:

A= (A)g+ (A1 + (A)y +--- =D (A),. 3)
—_ =~ =~ 5

scalar vector bivector

g
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In R™: (orthonormal basis + 1) EP, 9 elements € G(R™)
In R3: (orthonormal basis + 1) ="+ 23=8 elements € G(R?)

Introduction

Preliminaries

~~

trivector

GP
{72, v} + {1} — {1, 71,72, 73, 712,723, ¥31, L}
—_— ——

vectors bivectors

(1>

A
N AN~y T

A1 VoA
i 1375 /1772713 Linear Estimation

in GA
A € G(R™) — fundamental information block: GRS (Stmid)
GAAFs (Pose

Estimation)

A= Ao+ {A)i+ (A)s +---=) (A),. ()N
R AN , \ , ; pplications
scalar vector  bivector Conclusion

GA theory enables us to sum apples and oranges in a well-defined fashion! ‘
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G(R3): Complete Geometric Algebra of R3.

Vi Vi
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The elements of G(R?) basis (besides the scalar 1): 3 vectors, 3 bivectors
(oriented areas) 7;;, and the trivector I (pseudoscalar/oriented volume).



Subalgebras and Isomorphism

» GH(R?): Rotor Algebra of R? has basis {1,712}
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Subalgebras and Isomorphism

» G (R?): Rotor Algebra of R? has basis {1,712}

» |somorphic to the algebra of complex numbers.
A=c+jd,{c,d} € R— jis a bivector!
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Subalgebras and Isomorphism

» G(R?): Rotor Algebra of R? has basis {1,712}

» Isomorphic to the algebra of complex numbers.
A=c+jd,{c,d} € R— jis a bivector!

YL

i ) < B
' 71-72=0
J=1N2=7172
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Subalgebras and Isomorphism

» G(R?): Rotor Algebra of R? has basis {1,712}

» Isomorphic to the algebra of complex numbers.
A=c+jd,{c,d} € R— jis a bivector!

YL

Yihys e} € R ;2
) Y1-72 =0
J=1N2=7172

= (1172) (1172)
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Subalgebras and Isomorphism

» G(R?): Rotor Algebra of R? has basis {1,712}
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.......................... R 2
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Subalgebras and Isomorphism

» GH(R?): Rotor Algebra of R? has basis {1, 712,723,731}

13 /43



G (R?): Rotor Algebra of R? has basis {1, 712,723,731}
Isomorphic to the algebra of quaternions [2, 3]:

14> —712 J =23 k < —s1,

where {i, 7, k} are the three imaginary unities of quaternion algebra.
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G (R?): Rotor Algebra of R? has basis {1, 712,723,731}

Isomorphic to the algebra of quaternions [2, 3]:
i =12 J =23 k< —7a1,

where {i, 7, k} are the three imaginary unities of quaternion algebra.

Particularly useful in the development of GAAFs for pose estimation.

Rotation operator:
T — rrr .,
rotated

where z € R" and r € GT(R").
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Linear Estimation in GA
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Linear Algebra least-squares problem:

12
mian—d

{d,d} e R",n={1,2,---} and d is the estimate for d.
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Linear Algebra least-squares problem:

12
mian—d

{d,d} e R",n={1,2,---} and d is the estimate for d.

Two special cases:

Standard: d is a multivector, d = u*w is also a multivector resultant from an
array product, v and w are M X 1 arrays of multivectors

Pose estimation: {d,z} € R™ are vectors, d = ra7 + t, where the rotor 7 and
its reversed version 7 rotate x, and ¢ is a n x 1 translation vector
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GA general cost function

M Z
J(D, Ag, X, By) = |D - 3 AcXBy

k=1

M [ D=dA=0 D=
;Ukw“ M=1 Bi = W;k M=
2 ) x=1

array prod.

o2
(7u(w) = a — wu) S L e
Y- subjectto rr =7rr = 1

GAAFs pose estimation

M

> A X By, — canonical form of a linear transformation applied to the
k=1

multivector X ([1, p.64 and p.121])

W.B.Lopes
wil@openga.org
Introduction
Preliminaries

Fundamentals of
Geometric Algebra

GAAFs (Standard)

GAAFs (Pose
Estimation)

Applications

Conclusion



Geometric-Algebra Adaptive Filters
(Standard)




Minimize

Jo(w) = |d — w*w|?

Steepest-descent rule is adopted — follow the opposite direction of the
gradient of the cost function

Omitting the calculations here (please refer to Section 5.1 in the thesis)
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GA-LMS (Standard)

» Update rule:

w; = w;_1 + puie(i)

where p is the step size and e(i) = d(i) — ww;
~——

array product

: (9)

g
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Update rule:

w; = wi—1 + pue(q)

where p is the step size and e(i) = d(i) — ww;
~——

Same shape of the regular LMS AFs

array product

(9)
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Update rule: W.B.Lopes
R wil@openga.org
w; = wi—1 + puie(i)|, (9)
Introduction
where (1 is the step size and e(i) = d(i) — ujw; Preliminaries
Fundamentals of
array prOdUCt Geometric Algebra

Linear Estimation

Same shape of the regular LMS AFs n GA

. . . GAAFs (P
No constraints on the entries of the arrays u and w — they can be any kind Estimasti(onc;se

Of mu |tiVectOr Applications

Conclusion
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Update rule:

w; = wi—1 + puie(i)|, (9)

where p is the step size and e(i) = d(i) — ww;
~——

array product

Same shape of the regular LMS AFs

No constraints on the entries of the arrays u and w — they can be any kind
of multivector

It generalizes the standard LMS AF for several types of entries: general
multivectors, rotors, quaternions, complex numbers, real numbers.
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Steady-State Analysis

» The performance analysis adopts an specific data model (see Section 5.2)

g
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The performance analysis adopts an specific data model (see Section 5.2)
Starting point:

w; = w1 + pu; f(e(i)), (10)
where f(-) is a multivector-valued function of the estimation error e(7).

Boldface — random quantity
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The performance analysis adopts an specific data model (see Section 5.2)
Starting point:

w; = w1 + pu, f(e(i)), (10)
where f(-) is a multivector-valued function of the estimation error e(7).
Boldface — random quantity
Energy Conservation Relations (ECR) [4]

The ECR technique performs an interplay between the energies of the
weight array w and the error e at two successive time instants:

i — 1 (a priori) and i (a posteriori)
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The variance relation is obtained

2E<ea(i)f> = ,uE‘uif‘Q

, (11)

where e, (i) = ufAw;_; is the a priori error, in which Aw; = w® — w;, and

w

o

is the optimal weight vector.
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The variance relation is obtained

W.B.Lopes

2 .
2E<ea(z)f> == ,U,E"U,Zf‘ , (11) wil@openga.org

Introduction

where e, (i) = ufAw;_; is the a priori error, in which Aw; = w® —w;, and ~ Preliminaries
w® is the optimal weight vector. Fundamentals of

Geometric Algebra

For the GA—LMS, f(e(z)) = 6(7,) = ea<@') —+ ’U(’L) iLningaAr Estimation

GAAFs (Pose
Estimation)

Applications

Conclusion
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The variance relation is obtained

%6 { e (i)F ) = uEfusf| | (11)

where e, (i) = ufAw;_; is the a priori error, in which Aw; = w® — w;, and

? is the optimal weight vector.

w
For the GA-LMS, f(e(i)) = e(i) = eq(i) + v(i).
Separation principle (see [4, p.245])

Analysis is valid for inputs drawn from a white Gaussian stochastic process
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The variance relation is obtained

2E<ea(i)f> = ,uE‘uif‘Q ,

(11)

where e, (i) = ufAw;_; is the a priori error, in which Aw; = w® — w;, and

wO

is the optimal weight vector.

For the GA-LMS, f(e(i)) = e(i) = eq(i) + v(4).

Separation principle (see [4, p.245])

Analysis is valid for inputs drawn from a white Gaussian stochastic process

Steady-state EMSE for the complete algebra G(R™)

LMS

pM4no?o?

U~ v

2 — uM?2no?2’

72— 00|

(12)
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Any subalgebra g
GI(R™)

uM (Z) 26252

2 — [AM(Z)U%

p)

M n 2.2

Even Algebras ® l:Zk: (2k):| Ty
, fork=0,1,2,3,---
e 2~ uMo? 3 (5)
k

Complete GA of R3 32uMo202
G(R?) 1 —4pMo?

Rotor GA of R3 (Quaternions)

g+ (R?)

M [() + ()] o202

2 uMa () + ()]

Rotor GA of R? (Complex)
gt (R?)

uM[@) + ()] o202

2—uMa3[(3) + ()]

Rotor GA of R (Real)
Gt (R)

pMozoy
2 — uMo2
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Geometric-Algebra Adaptive Filters
(Pose Estimation)
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Two PCDs in the R3, Y (Target) and X (Source), with K correspondence
points

Match PCDs centroids

W.B.Lopes
wil@openga.org
Introduction
Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
in GA

GAAFs (Standard)

Applications

Conclusion

23 /43



Two PCDs in the R3, Y (Target) and X (Source), with K correspondence
points

Match PCDs centroids

Rigid transformation? Least-squares problem

K
1
F(R) =2 > llyx — Ray||?, subject to R*R = RR* = Iy and t = § — RZ
k=1

(13)
R: 3 x 3 rotation matrix, t: 3 x 1 translation vector.

Solution: SVD-based algorithms — Outlier sensitive
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The Rotation Estimation Problem in GA

Recast (13) in GA:

ex = yp — Rxy, = ep = yp — rxpr, subject to 77 =7 = |12 = 1. (14)
—~—

Geometric Product

The least-squares cost function becomes

g

GAAFs
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W.B.Lopes
Recast (13) in GA: wil@openga.org
Introduction
Preliminaries

er = Y — Rxp, = e, = yp — raxr , subject to rr =7r = \r|2 =1 (14)
—~—

Geometric Product Fundamentals of
Geometric Algebra

The least-squares cost function becomes L Exaucifes
K K K K GAAFs (Standard)
T = Sl — vl = = S el = o o= 1o > (exdi)
r :*Z k — TTET :*Z €L :fZGk*ek:fZerk.
K k=1 ’ K k=1 K k=1 K k=1
- - - T Applications
(15) Conclusion
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The Geometric-algebra steepest-descent algorithm for pose estimation

4

Ty =Ti-1+ p—
m

m
D yk A(ricazpFioa) | ria
k=1

If m =1 (one pair per iteration), %J(r) is approximated by its current

value

4 K

K
k=1

Z Y N\ (ricizemiz1) | mici~d [ys A (riciaimior)] riet

(16)

(17)
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GA-LMS (Pose Estimation)

» Update rule for the GA-LMS for pose estimation is

ri = ricy 4 plyi A (rica@ifion) oy

(18)

g ]

GAAFs

W.B.Lopes
wil@openga.org
Introduction
Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
in GA

GAAFs (Standard)

GAAFs (Pose
Estimation)

Applications

Conclusion

26 /43



Update rule for the GA-LMS for pose estimation is

ri =ric1+ Yy A (rici@irioa)] riea ‘

“Look at” one correspondence at each iteration
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Update rule for the GA-LMS for pose estimation is

ri =iy A (rio1xTio1)] iy ‘ (18)

“Look at” one correspondence at each iteration

Enforces reduction in computational complexity compared to traditional
rotation estimation techniques
GA-LMS cost: 54 real multiplications and 39 real additions per iteration.
SVD-based methods have cost O(K) at each registration iteration, i.e., it
depends on the number of points in the PCDs.
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GA-LMS (Pose Estimation)
=1 1 =2 1=k

Y1 : Y2 § §
> %Zzl rk_lxk?k_l

roT1To |

!o @

Figure 6 © Step-by-step GA-LMS (pose estimation)

€1 =1 A (Tox170)

AF

g

GAAFs

W.B.Lopes
wil@openga.org
Introduction
Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
in GA

GAAFs (Standard)

GAAFs (Pose
Estimation)

Applications

Conclusion

27 /43



Step-Size Bounds @

I% I K GAAFs
uV,X) = p> Q) [ S wQui@) |, Q=D ynAwar  (19)  wehil
k=1 k=1 n=1 S
ntroduction

Preliminaries

Fundamentals of
Geometric Algebra

Linear Estimation
100+ in GA
o 801 GAAFs (Standard)
S 60F GAAFs (Pose
% Estimation)
2 40t
@ Applications
20+
Conclusion
0 1 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
Greatest Dimension (meters)

Figure 7 - Simple rule for selecting p for the Stanford Bunny set. p = 15.
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The computational implementation of outer and geometric products
requires special libraries and/or toolboxes

Geometric Algebra ALgorithms Expression Templates (GAALET) [5], a
C++ library for evaluation of GA expressions

Codes and scripts on openga.org

openga.org &> docker
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https://sourceforge.net/projects/gaalet/
openga.org

G(R3) Multivector Entries

W.B.Lopes
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: Preliminaries
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G(R3) Multivector Entries

Wi 0.55 4+ 0v1 + 1v2 + 293 + 0.71v12 + 1.37v23 + 4.5v31 + 31
Ws 0.55 + 0’)/1 + 1’}/2 + 2’}/3 —+ 0.71"}/12 + 1.3’)/23 + 4.5’}/31 + 37
wl=| . | = ) (20)
War 0.55 + 071 + 12 + 23 + 0.717y12 + 1.3723 + 4.5731 + 31
40, 40
—— MSE —— EMSE
30 = = = MSE theory 30 = == EMSE theory
20 20
g 10 oy =107" 2 10 02=10""
B9 8 o
= 10 & 10
D0 = -20
-3 B Y e
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations

GA-LMS: MSE and EMSE learning curves for M = 10, u = 0.005, and
02 = 1073. The curves are averaged over 100 experiments.
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G(R3) Multivector Entries

2 _
Oy

{1072,1073,107°}.

The simulated
steady-state value is
obtained by averaging
the last 200 points of
the ensemble-average
learning curve for each
M.

o-

M

sw

= ©= MSE theory
MSE

——
M

| ; ; ; ; ; ; i
0 5 10 15 20 25 30 35 40

System Order (Taps)

a2 =102

= ©- ' EMSE theory
—*— EMSE

15 20 25 30 35 40
System Order (Taps)

Steady-state MSE and EMSE as functions of

the system order M
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G*(R3) Rotor Entries

(a) EMSE, M = 10,
© = 0.005, and

o2 =102 (100
experiments).

(b) MSE and EMSE
versus the number of
taps for . = 0.005 and
o2 =1073.

40y

——EMSE
= = =+ EMSE theory

_4 I | | . . . | . 1 i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations
(a)
—o0-
P P o PN _M—-——Q
=25
M _30- = ©- ' MSE theory
Z = ©- ' EMSE theory
5 —#— MSE
g -35- —#—EMSE
_a0-
45 1 . . 1 . |
0 5 10 15 20 25 30 35 40

System Order (Taps)
(b)

Rotor entries.
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GT(R?) Complex Entries

(a) EMSE learning
curve for M = 10,

© = 0.005, and

o2 =102 (100
experiments).

(b) Steady-state MSE
and EMSE versus the
number of taps for

© = 0.005 and

o2 =1073.

20y
——EMSE
10y === EMSE theory
0
m
= -10
LLE -20;
=
= 30
~40} =
5 i I 1 1 . . | . . i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations
(a)
—25- - & o o ol
[idel < S < < & o
_30-
—= 350
) = ©- ' MSE theory
S = ©- ' EMSE theory
5 —¥— MSE
5 ag —¥— EMSE
_50-
55 1 . 1 . |

. . .
5 10 15 20 25 30 35 40
System Order (Taps)

(b)

Complex entries.
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GT(R) Real Entries

(a) EMSE learning
curve for M = 10,

© = 0.005, and

o2 =102 (100
experiments).

(b) Steady-state MSE
and EMSE versus the
number of taps for

u = 0.005 and

02 =103,

10
——EMSE
= ==+ EMSE theory
-5 L L L L L L L L v L I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations
a
. (a)
-30, S -© < S S 9
_35
_a0F
_4s5-
50 = ©- ' MSE theory.
= ©- - EMSE theory
_sgl e MSE
—¥— EMSE
6 1 I 1 . . . I i
0 5 10 15 20 25 30 35 40

System Order (Taps)
(b)

Real entries.
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VIDEO
Cube set.

(top) EMSE for

02 =10"° and
different values of u.
(bottom) EMSE for
1 = 0.2 and different
noise variances o2.
Averaged over 200

realizations.

EMSE (dB)

EMSE (dB)

-100

-150

n=0 ; ; ; ; ; ; ; i
200 400 600 800 1000 1200 1400 1600 1800
\_ 05 =1072
r 6°=107>
\ 02 - 10‘9
= Y.
\ 62 )
|- V.
0 200 400 600 800 1000 1200 1400 1600 1800

Iterations

Cube set.
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Stanford bunnies set.

The cost function curve is plotted on top of the MSE to emphasize the
minimization performed by the AF.

Iterations

Bunny set, u = 8.
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The majority of AF algorithms available in the literature resorts to specific
subalgebras of GA (real, complex numbers and quaternions).
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The development of the GAAFs is an attempt to unify those different AF
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The majority of AF algorithms available in the literature resorts to specific
subalgebras of GA (real, complex numbers and quaternions).

The development of the GAAFs is an attempt to unify those different AF
approaches under the same mathematical language.

GAAFs have improved estimation capabilities — they can naturally estimate
any kind of multivector.
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The majority of AF algorithms available in the literature resorts to specific
subalgebras of GA (real, complex numbers and quaternions).

The development of the GAAFs is an attempt to unify those different AF
approaches under the same mathematical language.

GAAFs have improved estimation capabilities — they can naturally estimate
any kind of multivector.

Update rule shape is invariant (GAAFs standard) with respect to the
multivector subalgebra.
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The majority of AF algorithms available in the literature resorts to specific
subalgebras of GA (real, complex numbers and quaternions).

The development of the GAAFs is an attempt to unify those different AF
approaches under the same mathematical language.

GAAFs have improved estimation capabilities — they can naturally estimate
any kind of multivector.

Update rule shape is invariant (GAAFs standard) with respect to the
multivector subalgebra.

It is expected that any estimation problem posed in terms of hyper-complex
quantities could benefit from this work.
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The majority of AF algorithms available in the literature resorts to specific
subalgebras of GA (real, complex numbers and quaternions).

The development of the GAAFs is an attempt to unify those different AF
approaches under the same mathematical language.

GAAFs have improved estimation capabilities — they can naturally estimate
any kind of multivector.

Update rule shape is invariant (GAAFs standard) with respect to the
multivector subalgebra.

It is expected that any estimation problem posed in terms of hyper-complex
quantities could benefit from this work.

openga.org — a hub for GA-based algorithms.
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“Geometric-algebra LMS adaptive filter and its application to rotation Wi.“g;,?,j;’g’;?;g

estimation”- Published in IEEE Signal Processing Letters 2016.

Introduction

“6DOF point-cloud alignment using geometric algebra-based adaptive Preliminaries

filtering”- Proceedings of IEEE Winter Conference on Applications of pundamenta of
eometric gebra

Computer Vision (WACV) 2016. Linear Estimation
in GA

“Analyzing LIDAR Scan Skewing and its Impact on Scan Matching”- |IEEE GAAFs (Standard)
conference on Indoor Positioning and Indoor Navigation (IPIN) 2016 (paper EﬁAFStKP‘;se
accepted).

Applications

"Geometric-Algebra Adaptive Filters”- to be submitted to IEEE
Transactions on Signal Processing.
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GA-NLMS and GA-RLS for system ID.
GA-NLMS and GA-RLS for pose estimation.

Mean-square analysis of the GAAFs for pose estimation.
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Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics,

Introduction

@ Preliminaries

“Introduction to Clifford’s Geometric Algebra,” Fundamentals of
Geometric Algebra

Linear Estimation
in GA

@ GAAFs (Standard)

“Quaternions, interpolation and animation - diku-tr-98/5,” GAAFs (Pose
Estimation)

Applications

Adaptive filters,
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Thank you!
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